条件概率分布

起源

条件随机场->马尔可夫随机场
贝叶斯网络每一条边是一个条件概率分布,P(X|Y),条件是父节点、结果是子节点。他有一个问题,就是当我知道A、B、C三个变量之间有相关关系,但是不知道具体是谁依赖谁,或者我不想先假设谁依赖谁,这个时候贝叶斯就画不出来图了。因为贝叶斯网络是通过变量之间的条件分布来建模整个网络的,相关关系是通过依赖关系(条件分布)来表达的。

概念

条件概率分布(Conditional Probability Distribution,或者 条件分布,Conditional Distribution )是现代概率论中的概念。已知两个相关的随机变量X 和Y,随机变量Y 在条件{X =x}下的条件概率分布是指当已知X 的取值为某个特定值x之时,Y 的概率分布。 如果Y 在条件{X =x}下的条件概率分布是连续分布,那么其密度函数称作Y 在条件{X =x}下的条件概率密度函数(条件分布密度、条件密度函数)。与条件分布有关的概念,常常以“条件”作为前缀,如条件期望、条件方差等等。

例子

假设在桌子上抛掷一枚普通的骰子,则其点数结果的概率分布是集合 {\displaystyle {1,2,3,4,5,6}} {1,2,3,4,5,6}的均匀分布:每个点数出现的概率都是均等的六分之一。然而,如果据某个坐在桌边的人观察,向着他的侧面是6点,那么,在此条件下,向上的一面不可能是6点,也不可能是6点对面的1点。因此,在此条件下,抛骰子的点数结果是集合 {\displaystyle {2,3,4,5}} {2,3,4,5}的均匀分布:有四分之一的可能性出现 {\displaystyle 2,3,4,5} 2,3,4,5四种点数中的一种。可以看出,增加的条件或信息量(某个侧面是6点)导致了点数结果的概率分布的变化。这个新的概率分布就是条件概率分布。